We study three intriguing properties of contrastive learning. First, we generalize the standard contrastive loss to a broader family of losses, and we find that various instantiations of the generalized loss perform similarly under the presence of a multi-layer non-linear projection head. Second, we study if instance-based contrastive learning (with a global image representation) can learn well on images with multiple objects present. We find that meaningful hierarchical local features can be learned despite the fact that these objectives operate on global instance-level features. Finally, we study the phenomenon of feature suppression among competing features shared across augmented views, such as "color distribution" vs "object class". We construct datasets with explicit and controllable competing features, and show that, for contrastive learning, a few bits of easy-to-learn shared features can suppress, and even fully prevent, the learning of other sets of competing features. In scenarios where there are multiple objects in an image, the dominant object would suppress the learning of smaller objects. Existing contrastive learning methods critically rely on data augmentation to favor certain sets of features over others, and could suffer from learning saturation for scenarios where existing augmentations cannot fully address the feature suppression. This poses open challenges to existing contrastive learning techniques.
翻译:我们研究的是对比性学习的三个有趣的特性。 首先,我们将标准对比性损失概括为更广泛的损失类别,我们发现,在多层非线性投影头的出现下,普遍损失的各种即时现象也表现得类似。 其次,我们研究的是,如果以实例为基础的对比性学习(具有全球图像表征)能够很好地了解有多个对象存在的图像。我们发现,尽管这些目标以全球实例层面的特征运作,但仍可以学到有意义的地方等级特征。最后,我们研究的是,在扩大的视角之间共享的相竞特征之间,例如“颜色分布”和“对象类”等,对特征的压制现象。我们建造了具有明确和可控性竞争特征的数据集,并表明,为了对比性学习,一些简单到阅读的对比性学习特征可以抑制,甚至完全防止学习其他相竞特征。在图像中存在多个对象的情况下,主要对象会抑制对较小对象的学习。 现有的对比性学习方法非常依赖数据增强性,以偏重某些特征,而不是其他特征。 我们建造数据集, 并可能因学习现有增强性对比性模型而不能完全形成。