We propose a new representation of the offsets of the Lempel-Ziv (LZ) factorization based on the co-lexicographic order of the processed prefixes. The selected offsets tend to approach the k-th order empirical entropy. Our evaluations show that this choice of offsets is superior to the rightmost LZ parsing and the bit-optimal LZ parsing on datasets with small high-order entropy.
翻译:我们建议根据处理过的前缀的共同语言顺序,对 Lempel-Ziv (LZ) 的系数化进行新的补分。 选中的补分倾向于接近 k-th 顺序 经验性通缩。 我们的评估表明, 抵消的这一选择优于最右侧的 LZ 解析和比特最佳的 LZ 评分, 与小高序通缩的数据集相比。