Deep learning (DL) has shown great success in many human-related tasks, which has led to its adoption in many computer vision based applications, such as security surveillance systems, autonomous vehicles and healthcare. Such safety-critical applications have to draw their path to success deployment once they have the capability to overcome safety-critical challenges. Among these challenges are the defense against or/and the detection of the adversarial examples (AEs). Adversaries can carefully craft small, often imperceptible, noise called perturbations to be added to the clean image to generate the AE. The aim of AE is to fool the DL model which makes it a potential risk for DL applications. Many test-time evasion attacks and countermeasures,i.e., defense or detection methods, are proposed in the literature. Moreover, few reviews and surveys were published and theoretically showed the taxonomy of the threats and the countermeasure methods with little focus in AE detection methods. In this paper, we focus on image classification tasks and attempt to provide a survey for detection methods of test-time evasion attacks on neural network classifiers. A detailed discussion for such methods is provided with experimental results for eight state-of-the-art detectors under different scenarios on four datasets. We also provide potential challenges and future perspectives for this research direction.


翻译:深入学习(DL)在许多与人类有关的任务中表现出了巨大的成功,这导致它在许多基于计算机的视觉应用中被采纳,如安全监视系统、自主车辆和保健等。这类安全关键应用一旦有能力克服安全关键挑战,就必须走上成功部署的道路。这些挑战包括防患于未然的防御或/和辨别对抗实例(AEs),对立面可以谨慎地设计小的、往往不易察觉的噪音,称为扰动,以生成AE。AE的目的是欺骗DL模型,这使它成为DL应用的潜在风险。文献中提出了许多测试性规避攻击和反措施,即防御或探测方法。此外,很少发表和理论上展示威胁的分类和反制方法,很少关注AE探测方法。在本文中,我们侧重于图像分类任务,并试图为探测对神经网络分类人员进行测试性规避攻击的方法提供调查。我们用四种方法进行详细讨论,以便从实验性的角度对八种不同状态的情景进行研究。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年11月20日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Arxiv
11+阅读 · 2020年8月3日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
12+阅读 · 2019年3月14日
Adversarial Metric Attack for Person Re-identification
Arxiv
6+阅读 · 2018年3月19日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年11月20日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员