We describe an efficient domain decomposition-based framework for nonlinear multiscale PDE problems. The framework is inspired by manifold learning techniques and exploits the tangent spaces spanned by the nearest neighbors to compress local solution manifolds. Our framework is applied to a semilinear elliptic equation with oscillatory media and a nonlinear radiative transfer equation; in both cases, significant improvements in efficacy are observed. This new method does not rely on detailed analytical understanding of the multiscale PDEs, such as their asymptotic limits, and thus is more versatile for general multiscale problems.
翻译:我们描述一个非线性多尺度PDE问题的高效域分解框架。这个框架受多种学习技术的启发,利用近邻相距距离的相近空间压缩本地解决方案的方块。我们的框架应用到一个半线性椭圆方程式,配有流质介质和非线性辐射传输方程式;在这两种情况下,都观察到效率的显著提高。这一新的方法并不依赖于对多尺度PDE的详细分析理解,例如它们的单质限制,因此对一般的多尺度问题更具多功能性。