Recognizing named entities (NEs) is commonly conducted as a classification problem that predicts a class tag for an NE candidate in a sentence. In shallow structures, categorized features are weighted to support the prediction. Recent developments in neural networks have adopted deep structures that map categorized features into continuous representations. This approach unfolds a dense space saturated with high-order abstract semantic information, where the prediction is based on distributed feature representations. In this paper, the regression operation is introduced to locate NEs in a sentence. In this approach, a deep network is first designed to transform an input sentence into recurrent feature maps. Bounding boxes are generated from the feature maps, where a box is an abstract representation of an NE candidate. In addition to the class tag, each bounding box has two parameters denoting the start position and the length of an NE candidate. In the training process, the location offset between a bounding box and a true NE are learned to minimize the location loss. Based on this motivation, a multiobjective learning framework is designed to simultaneously locate entities and predict the class probability. By sharing parameters for locating and predicting, the framework can take full advantage of annotated data and enable more potent nonlinear function approximators to enhance model discriminability. Experiments demonstrate state-of-the-art performance for nested named entities\footnote{Our codes will be available at: \url{https://github.com/wuyuefei3/BR}}.
翻译:识别名称实体( NES) 通常是一个分类问题, 用于预测 NE 候选人在句子中的等级标记 。 在浅层结构中, 分类特征被加权以支持预测 。 神经网络的最近发展采用了深度结构, 将分类特征映射成连续的表示方式 。 这种方法展示了一个密集的空间, 以高阶抽象语义信息为根据, 预测以分布地貌表示为基础 。 在本文中, 引入回归操作, 以将 NE 插入一个句子 。 在这个方法中, 首先设计了一个深层网络, 将输入句转换成经常性地貌地图 。 从地貌地图中生成了弹孔框, 里面的框是 NE 候选者的抽象表示方式 。 除此分类标签外, 每个约束框中有两个参数, 标明了起始位置和 NEE候选人的长度 。 在培训过程中, 边框和真正的 NEE 之间的位置被抵消, 以尽量减少位置损失 。 基于这一动机, 设计一个多目标学习框架, 以同时定位实体, 并预测阶级概率概率 。 通过共享定位和预测 NEAR- stembil- deal- am- am- adrial- commilling commil commol commal comm commal compil be 将展示一个功能, 将使得 能够 完全 完全 。