For many inverse parameter problems for partial differential equations in which the domain contains only well-separated objects, an asymptotic solution to the forward problem involving 'polarization tensors' exists. These are functions of the size and material contrast of inclusions, thereby describing the saturation component of the non-linearity. As such, these asymptotic expansions can allow fast and stable reconstruction of small isolated objects. In this paper, we show how such an asymptotic series can be applied to non-linear least-squares reconstruction problems, by deriving an approximate diagonal Hessian matrix for the data misfit term. Often, the Hessian matrix can play a vital role in dealing with the non-linearity, generating good update directions which accelerate the solution towards a global minimum which may lie in a long curved valley, but computational cost can make direct calculation infeasible. Since the polarization tensor approximation assumes sufficient separation between inclusions, our approximate Hessian does not account for non-linearity in the form of lack of superposition in the inverse problem. It does however account for the non-linear saturation of the change in the data with increasing material contrast. We therefore propose to use it as an initial Hessian for quasi-Newton schemes. This is demonstrated for the case of electrical impedance tomography in numerical experimentation, but could be applied to any other problem which has an equivalent asymptotic expansion. We present numerical experimentation into the accuracy and reconstruction performance of the approximate Hessian, providing a proof of principle of the reconstruction scheme.
翻译:对于部分差异方程式的许多反偏差参数问题, 域内仅包含精度最小方程式, 这是一种解决“ 极化加热器” 存在的前期问题的零星解决方案。 这些功能是包含的大小和物质对比功能, 从而描述非线性差的饱和部分。 因此, 这些无线性扩张可以快速和稳定地重建小孤立对象。 在本文中, 我们展示了这样一个无线性序列如何适用于非线性最小方程式的重建问题, 其方法是为数据错误的术语产生一个大约的对等的赫萨基矩阵。 通常, 海萨基矩阵在处理非线性整合时可以发挥关键的作用, 从而产生良好的更新方向, 从而加速全球最小值的解决方案, 可能位于一个漫长的弯曲谷, 但计算成本可以直接进行不可行的计算 。 由于两极化的温度近似可充分分辨, 我们的赫萨伊恩没有将非线性因素纳入非线性的形式, 而在数据扩张中缺乏等值的对等值的海斯矩阵矩阵矩阵矩阵矩阵矩阵矩阵矩阵结构的模拟重组。 然而, 正在将它作为正向相对性变的数值分析。 解释。 。 将它作为一个非推算算算算出一个非正数 。 。