In this note, we study the prescribed-time (PT) synchronization of multiweighted and directed complex networks (MWDCNs) via pinning control. Unlike finite-time and fixed-time synchronization, the time for synchronization can be preset as needed, which is independent of initial values and parameters like coupling strength. First and foremost, we reveal the essence of PT stability by improper integral, L'Hospital rule and Taylor expansion theory. Many controllers established previously for PT stability can be included in our new model. Then, we apply this new result on MWDCNs as an application. The synchronization error at the prescribed time is discussed carefully, so, PT synchronization can be reached. The network topology can be directed and disconnected, which means that the outer coupling matrices (OCMs) can be asymmetric and not connected. The relationships between nodes are allowed to be cooperative or competitive, so elements in OCMs and inner coupling matrices (ICMs) can be positive or negative. We use the rearranging variables' order technique to combine ICMs and OCMs together to get the sum matrices, which can make a bridge between multiweighted and single-weighted networks. Finally, simulations are presented to illustrate the effectiveness of our theory.


翻译:在本说明中, 我们通过针线控制来研究多重量和定向复杂网络( MWDCNs) 的指定时间同步( PT) 。 与有限时间和固定时间同步不同, 同步的时间可以按需要预设, 与初始值和参数无关, 比如混合强度。 首先, 我们通过不适当的整体、 医院规则和泰勒扩张理论来揭示PT稳定性的本质。 许多以前为PT稳定性而建立的控制器可以被纳入我们的新模式。 然后, 我们将这一新的结果应用到 MWDCNs 上, 作为一种应用程序。 我们仔细地讨论了指定时间的同步误差, 因此, 可以达到 PT同步。 网络的表层可以被定向和断开, 这意味着外部组合矩阵可以是不对称的, 而不是连接的。 节点之间的关系可以合作或竞争, 所以 OCMs 和 内部组合矩阵中的元素可以是正或负的。 我们用重新排列的变量技术将ICMs和 OCMs 组合在一起, 以获得总基质矩阵, 这可以使我们的模型成为一个桥梁。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
76+阅读 · 2021年3月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员