Mimicking vascular systems in living beings, designers have realized microvascular composites to achieve thermal regulation and other functionalities, such as electromagnetic modulation, sensing, and healing. Such material systems with mentioned functionalities benefit various aerospace, military, and civilian applications. Although heat transfer is a mature field, control of thermal characteristics in synthetic microvascular systems is new, and the fundamental comprehension is hazy. What will benefit designers are predictive mathematical models and an in-depth qualitative understanding of vasculature-based active cooling/heating. So, the central focus of this paper is to address the remarked knowledge gap. First, we present a reduced-order model with broad applicability, allowing the inlet temperature to differ from the ambient temperature. Second, we use mathematical analysis tools for this reduced-order model and reveal many heat transfer properties in fluid-sequestered vasculature systems. We derive point-wise properties (minimum, maximum, and comparison principles) and global properties (such as bounds on performance metrics such as the mean surface temperature and cooling efficiency). These newfound results deepen our understanding of active cooling/heating and propel the perfecting of thermal regulation systems.
翻译:设计师在活生物体中移动血管系统,实现了微血管合成,以实现热调节和其他功能,如电磁调控、感应和愈合。上述功能的材料系统有利于各种航空航天、军事和民用应用。虽然热传输是一个成熟的领域,但合成微血管系统中热特性的控制是新的,基本理解是模糊的。对设计师有益的是预测数学模型和对以血管为基础的活性冷却/热处理的深入定性理解。因此,本文件的中心重点是解决所说的知识差距。首先,我们提出了一个可广泛应用的减序模型,允许室内温度与环境温度不同。第二,我们对这一减序模型使用数学分析工具,并揭示了液体密封血管系统中的许多热转移特性。我们从中得出一些点性(最小、最大和比较原则)和全球特性(例如平均表面温度和冷却效率等性能指标的界限)。这些新发现的结果加深了我们对积极冷却/热能调节和完美热压系统的认识。