The performance of distributed and data-centric applications often critically depends on the interconnecting network. Applications are hence modeled as virtual networks, also accounting for resource demands on links. At the heart of provisioning such virtual networks lies the NP-hard Virtual Network Embedding Problem (VNEP): how to jointly map the virtual nodes and links onto a physical substrate network at minimum cost while obeying capacities. This paper studies the VNEP in the light of parameterized complexity. We focus on tree topology substrates, a case often encountered in practice and for which the VNEP remains NP-hard. We provide the first fixed-parameter algorithm for the VNEP with running time $O(3^r (s+r^2))$ for requests and substrates of $r$ and $s$ nodes, respectively. In a computational study our algorithm yields running time improvements in excess of 200x compared to state-of-the-art integer programming approaches. This makes it comparable in speed to the well-established ViNE heuristic while providing optimal solutions. We complement our algorithmic study with hardness results for the VNEP and related problems.


翻译:分布式和以数据为中心的应用程序的性能往往主要取决于相互连接的网络。应用程序因此以虚拟网络为模型,同时也考虑到对链接的资源需求。提供这种虚拟网络的核心是NP-硬虚拟网络嵌入问题(VNEP ):如何在服从能力下以最低成本联合绘制虚拟节点和链接到物理基底网络(VNEP ) : 如何在服从能力下以最低成本绘制虚拟节点和链接到物理基底网络。本文根据参数化复杂度对VNEP 进行了研究。 我们侧重于树木地形基质,这是在实践中经常遇到的一个案例,VNEP仍然坚固。 我们为VNEP提供了第一个固定参数算法, 运行时间为O( 3°r (s+R% 2) 美元), 运行时间分别为 $ 和 $ $s@s nodes 。 在一项计算研究中, 我们的算法比状态整数式编程法方法提高了200x, 使时间的改进幅度超过200x。这在速度上可以比完善的VNE Heurist,同时提供最佳的解决方案。我们用精确结果来补充我们的算学结果。

0
下载
关闭预览

相关内容

网络嵌入旨在学习网络中节点的低维度潜在表示,所学习到的特征表示可以用作基于图的各种任务的特征,例如分类,聚类,链路预测和可视化。
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2019年6月20日
SepNE: Bringing Separability to Network Embedding
Arxiv
3+阅读 · 2019年2月26日
Arxiv
4+阅读 · 2019年1月14日
Arxiv
4+阅读 · 2018年2月19日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员