Scientists need to compare the support for models based on observed phenomena. The main goal of the evidential paradigm is to quantify the strength of evidence in the data for a reference model relative to an alternative model. This is done via an evidence function, such as $\Delta SIC$, an estimator of the sample size scaled difference of divergences between the generating mechanism and the competing models. To use evidence, either for decision making or as a guide to the accumulation of knowledge, an understanding of the uncertainty in the evidence is needed. This uncertainty is well characterized by the standard statistical theory of estimation. Unfortunately, the standard theory breaks down if the models are misspecified, as it is normally the case in scientific studies. We develop non-parametric bootstrap methodologies for estimating the sampling distribution of the evidence estimator under model misspecification. This sampling distribution allows us to determine how secure we are in our evidential statement. We characterize this uncertainty in the strength of evidence with two different types of confidence intervals, which we term "global" and "local". We discuss how evidence uncertainty can be used to improve scientific inference and illustrate this with a reanalysis of the model identification problem in a prominent landscape ecology study (Grace and Keeley, 2006) using structural equations.
翻译:科学工作者需要比较对基于观察到的现象的模型的支持。 证据范式的主要目标是量化参考模型数据中相对于替代模型的参考模型数据证据的强度。 这是通过证据函数, 如 $\ Delta SIC$, 对生成机制与相竞模型之间差异的抽样规模差异的估测师。 使用证据, 无论是用于决策还是作为知识积累指南, 都需要了解证据的不确定性。 这种不确定性的特征是标准的估算统计理论。 不幸的是, 如果模型被错误地指定, 标准理论就会崩溃, 因为通常在科学研究中是这样。 我们开发了非参数式的测算器布置方法, 用于估计标定模型误差下的证据估计的抽样分布情况。 这种抽样分布使我们能够确定我们的证据在证据陈述中的安全程度。 我们用两种不同的信任间隔( 我们称之为“ 全球” 和“ 局部” ) 来描述证据的不确定性。 我们讨论如何使用证据不确定性来改进科学推论, 并用模型图象进行重新分析。