项目名称: 中空结构碳/氮化碳复合微球的可控制备及其超声医学应用研究

项目编号: No.51502172

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 一般工业技术

项目作者: 康诗飞

作者单位: 上海理工大学

项目金额: 20万元

中文摘要: 如何在造影剂辅助下实现肿瘤的早期诊断和靶向治疗,是当前医学影像学面临的难点问题,而开发合适的液态氟碳造影剂包裹成型生物材料是解决问题的关键。随着材料科学与分子影像学交叉学科的发展,采用新型的碳/氮化碳复合生物材料作为液态氟碳造影剂载体,有望从根本上解决传统材料稳定性差和性能单一的问题,更好的实现肿瘤多模态显影。本项目拟采用模板法合成中空结构碳/氮化碳复合微球,并综合应用材料科学、超声医学及分子生物学等多学科技术,实现材料形貌和表面官能结构调控,通过向复合微球内灌注液态氟碳造影剂并连接配体和药物,制备出可穿透血管壁的靶向造影剂,为肿瘤多模态早期超声诊断和靶向治疗提供重要的实验依据。在此基础上通过系统的构效关系研究,阐明碳/氮化碳复合材料的微观结构和表面官能结构影响液态氟碳造影剂靶向输送、可控触发和超声显像性能的机制,最终形成高性能碳/氮化碳医用造影剂载体材料的设计与制备理论基础。

中文关键词: 纳米复合材料;可控制备;药物缓释载体;超声医学;成像

英文摘要: To effectively implement ultrasound contrast agent assisted early diagnosis and treatment of tumors is the major challenge of medical imaging research, and the suitable perfluorocarbon(PFC) contrast agent packaging biomaterial is the key problem in this field. With the rapid development of molecular imaging which is produced by the connection of nanomaterial technology and molecular biology, the problem will be solved. Multimodal tumor targeting contrast agent based on C/g-C3N4 composites biomaterials, which can combine advantages of various molecular imaging, has become a promising choice to achieve better targeting imaging of tumor. This project aims to prepare a new type of hollow C/g-C3N4 microspheres which can be used as PFC carrier to enhance ultrasound imaging. Using multidisciplinary methods of material chemistry, ultrasonic medicine and immunology, we will prepare a new targeted ultrasound contrast agents which can pass through the vascular, eventually provides an important experimental basis for tumor early ultrasonic diagnosis and treatment. The influence law of microstructure, surface functional structure and bioelectric potential of the C/g-C3N4 biomaterial on the PFC transportation, controllable triggering and tumor imaging effect will be systematically revealed, so as to build up the theoretical basis for the design and preparation of high-performance ultrasound imaging materials.

英文关键词: Nanocomposites ;Controllable preparation;Drug control-released carrier;Ultrasonic medicine;Imaging

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
41+阅读 · 2021年7月24日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
49+阅读 · 2021年2月10日
专知会员服务
52+阅读 · 2020年12月28日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
自动化所人工智能辅助诊断方法进入肿瘤诊疗指南
中国科学院自动化研究所
1+阅读 · 2021年9月3日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
外泌体行业规模2030年预计将达22.8亿美元
外泌体之家
18+阅读 · 2019年3月26日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Salient Objects in Clutter
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
41+阅读 · 2021年7月24日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
49+阅读 · 2021年2月10日
专知会员服务
52+阅读 · 2020年12月28日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员