This paper extends my research applying statistical decision theory to treatment choice with sample data, using maximum regret to evaluate the performance of treatment rules. The specific new contribution is to study as-if optimization using estimates of illness probabilities in clinical choice between surveillance and aggressive treatment. Beyond its specifics, the paper sends a broad message. Statisticians and computer scientists have addressed conditional prediction for decision making in indirect ways, the former applying classical statistical theory and the latter measuring prediction accuracy in test samples. Neither approach is satisfactory. Statistical decision theory provides a coherent, generally applicable methodology.
翻译:本文件扩展了我的研究范围,将统计决定理论应用于使用抽样数据的治疗选择,利用最大的遗憾来评价治疗规则的绩效。具体的新贡献是利用临床在监测与攻击性治疗之间选择疾病概率的估计进行最佳研究。除了其具体内容外,该文件发出了一个广泛的信息。统计人员和计算机科学家以间接方式处理决策的有条件预测,前者在测试样本中应用传统统计理论,后者衡量预测准确性。两种方法都不令人满意。统计决定理论提供了一种一致、普遍适用的方法。