This paper extends my research applying statistical decision theory to treatment choice with sample data, using maximum regret to evaluate the performance of treatment rules. The specific new contribution is to study as-if optimization using estimates of illness probabilities in clinical choice between surveillance and aggressive treatment. Beyond its specifics, the paper sends a broad message. Statisticians and computer scientists have addressed conditional prediction for decision making in indirect ways, the former applying classical statistical theory and the latter measuring prediction accuracy in test samples. Neither approach is satisfactory. Statistical decision theory provides a coherent, generally applicable methodology.


翻译:本文件扩展了我的研究范围,将统计决定理论应用于使用抽样数据的治疗选择,利用最大的遗憾来评价治疗规则的绩效。具体的新贡献是利用临床在监测与攻击性治疗之间选择疾病概率的估计进行最佳研究。除了其具体内容外,该文件发出了一个广泛的信息。统计人员和计算机科学家以间接方式处理决策的有条件预测,前者在测试样本中应用传统统计理论,后者衡量预测准确性。两种方法都不令人满意。统计决定理论提供了一种一致、普遍适用的方法。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年8月2日
专知会员服务
53+阅读 · 2020年9月7日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员