This paper focuses on variational inference with intractable likelihood functions that can be unbiasedly estimated. A flexible variational approximation based on Gaussian mixtures is developed, by adopting the mixture population Monte Carlo (MPMC) algorithm in \cite{cappe2008adaptive}. MPMC updates iteratively the parameters of mixture distributions with importance sampling computations, instead of the complicated gradient estimation of the optimization objective in usual variational Bayes. Noticing that MPMC uses a fixed number of mixture components, which is difficult to predict for real applications, we further propose an automatic component--updating procedure to derive an appropriate number of components. The derived adaptive MPMC algorithm is capable of finding good approximations of the multi-modal posterior distributions even with a standard Gaussian as the initial distribution, as demonstrated in our numerical experiments.
翻译:本文侧重于基于高斯混合物的变异近似值,通过在\cite{cappe2008adaptive}中采用混合物群Monte Carlo(MPMC)算法,开发了基于高斯混合物的灵活变异近似值。MPMC反复更新混合物分布参数,并进行重要抽样计算,而不是对通常变异海湾的优化目标进行复杂的梯度估计。我们注意到MPMC使用固定数量的混合物组件,很难对实际应用进行预测,我们进一步提议一个自动的元件更新程序,以产生适当数量的组件。衍生的适应性MPMC算法能够找到多模式后部分布的好近似值,即使我们的数字实验显示,即使以标准高斯仪作为最初的分布。