Apple recently revealed its deep perceptual hashing system NeuralHash to detect child sexual abuse material (CSAM) on user devices before files are uploaded to its iCloud service. Public criticism quickly arose regarding the protection of user privacy and the system's reliability. In this paper, we present the first comprehensive empirical analysis of deep perceptual hashing based on NeuralHash. Specifically, we show that current deep perceptual hashing may not be robust. An adversary can manipulate the hash values by applying slight changes in images, either induced by gradient-based approaches or simply by performing standard image transformations, forcing or preventing hash collisions. Such attacks permit malicious actors easily to exploit the detection system: from hiding abusive material to framing innocent users, everything is possible. Moreover, using the hash values, inferences can still be made about the data stored on user devices. In our view, based on our results, deep perceptual hashing in its current form is generally not ready for robust client-side scanning and should not be used from a privacy perspective.


翻译:苹果公司最近披露了它深层的感知散射系统 NeuralHash, 以便在文件上传到其iCloud服务之前在用户设备上检测儿童性虐待材料( CSAM) 。 在保护用户隐私和系统可靠性方面,公众的批评迅速出现。 在本文中,我们首次展示了基于NeuralHash 的感知性散射的深度全面经验分析。 具体地说, 我们显示当前深层感知散射可能并不强大。 对手可以通过对图像进行微小的改变来操纵散射值, 要么通过梯度方法, 要么仅仅通过进行标准的图像转换、 强迫或防止散射碰撞。 这种攻击允许恶意行为者很容易地利用探测系统: 从隐蔽虐待材料到设置无辜用户, 一切皆有可能。 此外, 使用散射值仍然可以对用户设备上储存的数据作出推断。 我们认为, 以我们的结果为基础的深感知的当前形式的散射一般不准备进行稳健的客户端扫描, 并且不应从隐私角度使用。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【资源】问答阅读理解资源列表
专知
3+阅读 · 2020年7月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
9+阅读 · 2021年10月5日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Learning to Focus when Ranking Answers
Arxiv
5+阅读 · 2018年8月8日
Arxiv
5+阅读 · 2018年3月28日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
【资源】问答阅读理解资源列表
专知
3+阅读 · 2020年7月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
9+阅读 · 2021年10月5日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Learning to Focus when Ranking Answers
Arxiv
5+阅读 · 2018年8月8日
Arxiv
5+阅读 · 2018年3月28日
Top
微信扫码咨询专知VIP会员