Data association is a crucial component for any multiple object tracking (MOT) method that follows the tracking-by-detection paradigm. To generate complete trajectories such methods employ a data association process to establish assignments between detections and existing targets during each timestep. Recent data association approaches try to solve a multi-dimensional linear assignment task or a network flow minimization problem or either tackle it via multiple hypotheses tracking. However, during inference an optimization step that computes optimal assignments is required for every sequence frame adding significant computational complexity in any given solution. To this end, in the context of this work we introduce Transformer-based Assignment Decision Network (TADN) that tackles data association without the need of any explicit optimization during inference. In particular, TADN can directly infer assignment pairs between detections and active targets in a single forward pass of the network. We have integrated TADN in a rather simple MOT framework, we designed a novel training strategy for efficient end-to-end training and demonstrate the high potential of our approach for online visual tracking-by-detection MOT on two popular benchmarks, i.e. MOT17 and UA-DETRAC. Our proposed approach outperforms the state-of-the-art in most evaluation metrics despite its simple nature as a tracker which lacks significant auxiliary components such as occlusion handling or re-identification. The implementation of our method is publicly available at https://github.com/psaltaath/tadn-mot.


翻译:数据关联是遵循逐项跟踪模式的多个对象跟踪(MOT)方法的关键组成部分。 要生成完整的轨迹, 此类方法将采用数据关联程序, 以便在每个时间步骤中确定检测和现有目标之间的任务。 最近的数据关联方法试图解决多维线性任务或网络流动最小化问题, 或者通过多个假设跟踪来解决这个问题。 但是, 在推断过程中, 计算每个序列框架的最佳任务需要优化, 在任何特定解决方案中增加重要的计算复杂性。 为此, 我们引入了基于变异器的任务分配决定网络( TADN ), 从而在每次时间步骤中, 使用数据关联程序来在检测和现有目标之间确定任务。 特别是, 数据关联方法可以直接将检测和活动目标组合在网络的单一远端跟踪中进行。 我们将 MADN 整合到一个非常简单的 MOT 框架, 我们设计了一个新的培训战略, 以高效的端端端端端培训, 并展示了我们以两种通用的直观跟踪MOTOT 方法的高度潜力, 在两种流行的基准上, i. OO17 和S- IMA- train- trade- trade- trade- sal- developmental- sweat the the istryal- destryal- istral- deal- deal- deal- deal- deal- deg- deal- degal- deal- degal- developmental

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月25日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员