We study the graph parameter elimination distance to bounded degree, which was introduced by Bulian and Dawar in their study of the parameterized complexity of the graph isomorphism problem. We prove that the problem is fixed-parameter tractable on planar graphs, that is, there exists an algorithm that given a planar graph $G$ and integers $d$ and $k$ decides in time $f(k,d)\cdot n^c$ for a computable function~$f$ and constant $c$ whether the elimination distance of $G$ to the class of degree $d$ graphs is at most $k$.
翻译:Bulian和Dawar在研究图象形态问题的参数复杂性时,采用了图形参数消除距离至约束度的方法。我们证明,问题在于平面图上的固定参数,也就是说,存在着一种算法,根据平面图($G$)和整数($d)和美元(k$),计算函数($f,d)\cd)\cddnc$-c$确定一个可计算函数($f)和恒定值($C$)的时间,是否将G$除去到度等级($dg)的距离最多为$k美元。