A reciprocal LASSO (rLASSO) regularization employs a decreasing penalty function as opposed to conventional penalization methods that use increasing penalties on the coefficients, leading to stronger parsimony and superior model selection relative to traditional shrinkage methods. Here we consider a fully Bayesian formulation of the rLASSO problem, which is based on the observation that the rLASSO estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters are assigned independent inverse Laplace priors. Bayesian inference from this posterior is possible using an expanded hierarchy motivated by a scale mixture of double Pareto or truncated normal distributions. On simulated and real datasets, we show that the Bayesian formulation outperforms its classical cousin in estimation, prediction, and variable selection across a wide range of scenarios while offering the advantage of posterior inference. Finally, we discuss other variants of this new approach and provide a unified framework for variable selection using flexible reciprocal penalties. All methods described in this paper are publicly available as an R package at: https://github.com/himelmallick/BayesRecipe.


翻译:LASSO(rLASSO)的对等正规化使用一种越来越严厉的系数惩罚的常规惩罚方法,而传统的惩罚方法则使用越来越严厉的系数惩罚,从而导致比传统的收缩方法更强烈的松动和更好的模式选择。这里我们考虑对RLASSO问题的完全巴伊西亚配方,这是基于这样一种观察,即当回归参数被赋予独立的Laplace前科时,rLASSO对线性回归参数的估计可以被解释为一种巴伊西亚后退模式的估计数。从这一后退点上推断出,有可能使用由双倍双倍Pareto或松动正常分布的比重结构驱动的扩大的等级。在模拟和真实的数据集上,我们表明,Bayesian配方的配方在估算、预测和各种情景的可变性选择方面超越了其典型表兄,同时提供了后推论的优势。最后,我们讨论了这一新方法的其他变式,并提供了一个使用灵活的对等惩罚进行变量选择的统一框架。本文中描述的所有方法都公开作为R包:http://github.com/Reclikeys.

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
273+阅读 · 2019年10月9日
一文读懂线性回归、岭回归和Lasso回归
CSDN
33+阅读 · 2019年10月13日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月20日
Arxiv
0+阅读 · 2021年4月19日
Arxiv
0+阅读 · 2021年4月19日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
273+阅读 · 2019年10月9日
相关资讯
一文读懂线性回归、岭回归和Lasso回归
CSDN
33+阅读 · 2019年10月13日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员