Injectivity plays an important role in generative models where it enables inference; in inverse problems and compressed sensing with generative priors it is a precursor to well posedness. We establish sharp characterizations of injectivity of fully-connected and convolutional ReLU layers and networks. First, through a layerwise analysis, we show that an expansivity factor of two is necessary and sufficient for injectivity by constructing appropriate weight matrices. We show that global injectivity with iid Gaussian matrices, a commonly used tractable model, requires larger expansivity between 3.4 and 10.5. We also characterize the stability of inverting an injective network via worst-case Lipschitz constants of the inverse. We then use arguments from differential topology to study injectivity of deep networks and prove that any Lipschitz map can be approximated by an injective ReLU network. Finally, using an argument based on random projections, we show that an end-to-end -- rather than layerwise -- doubling of the dimension suffices for injectivity. Our results establish a theoretical basis for the study of nonlinear inverse and inference problems using neural networks.
翻译:注射在基因模型中起着重要作用,因为它可以推断;反面的问题和带有基因前端的压缩感测,是基因前端的先导。我们建立了完全连接和进化雷流层和网络的敏锐的投射特征。首先,通过分层分析,我们通过建造适当的重量矩阵,表明两个扩展因子对于投射是必要和足够的。我们显示,使用iid Gausian 矩阵这一常用的可移动模型的全球投射性要求在3.4和10.5之间进行更大的扩张。我们还通过反向的最坏的利普施常数来描述喷射网络的稳定性。我们随后利用不同地形学的论据来研究深层网络的投射性,并证明任何利普施奇兹地图都可以通过投射 ReLU 网络加以近似。最后,我们用随机预测的论据,表明,末端 -- -- 而不是分层 -- -- 使这一维度翻倍的倍数足以预测。我们的结果为使用非反向和反向问题研究网络的理论基础。