Because it determines a center-outward ordering of observations in $\mathbb{R}^d$ with $d\geq 2$, the concept of statistical depth permits to define quantiles and ranks for multivariate data and use them for various statistical tasks (\textit{e.g.} inference, hypothesis testing). Whereas many depth functions have been proposed \textit{ad-hoc} in the literature since the seminal contribution of \cite{Tukey75}, not all of them possess the properties desirable to emulate the notion of quantile function for univariate probability distributions. In this paper, we propose an extension of the \textit{integrated rank-weighted} statistical depth (IRW depth in abbreviated form) originally introduced in \cite{IRW}, modified in order to satisfy the property of \textit{affine-invariance}, fulfilling thus all the four key axioms listed in the nomenclature elaborated by \cite{ZuoS00a}. The variant we propose, referred to as the Affine-Invariant IRW depth (AI-IRW in short), involves the covariance/precision matrices of the (supposedly square integrable) $d$-dimensional random vector $X$ under study, in order to take into account the directions along which $X$ is most variable to assign a depth value to any point $x\in \mathbb{R}^d$. The accuracy of the sampling version of the AI-IRW depth is investigated from a nonasymptotic perspective. Namely, a concentration result for the statistical counterpart of the AI-IRW depth is proved. Beyond the theoretical analysis carried out, applications to anomaly detection are considered and numerical results are displayed, providing strong empirical evidence of the relevance of the depth function we propose here.


翻译:因为它确定了以$mathbb{R ⁇ d$和$d\geq 2美元计算的观测中向外排序 。 统计深度概念允许为多变量数据定义量和排名,并将其用于各种统计任务(\ textit{ e.g.} 推断,假设测试 ) 。 许多深度功能是自\ cite{Tukey75} 初始贡献以来在文献中提议的\ textit{ad- hoc} 。 并不是所有这些功能都具备在 univarial 概率分布中模仿 Qortile 函数概念的可取性。 在本文中,我们提议扩展 最初以\ textit{ 集级加权} 格式引入的统计深度( IRW 深度深度深度) 。 为了满足\ textitle{ad- ad- hoffine- varience} 属性, 因此满足了由\ cite\\\\\ sult sultiveSix Exliversive ex Exliental ex ex ex exal ex.

0
下载
关闭预览

相关内容

专知会员服务
23+阅读 · 2021年4月10日
专知会员服务
77+阅读 · 2021年3月16日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月22日
Signal Detection in Degree Corrected ERGMs
Arxiv
0+阅读 · 2021年8月20日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关VIP内容
专知会员服务
23+阅读 · 2021年4月10日
专知会员服务
77+阅读 · 2021年3月16日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员