Location-based Social Networks (LBSNs) enable users to socialize with friends and acquaintances by sharing their check-ins, opinions, photos, and reviews. Huge volume of data generated from LBSNs opens up a new avenue of research that gives birth to a new sub-field of recommendation systems, known as Point-of-Interest (POI) recommendation. A POI recommendation technique essentially exploits users' historical check-ins and other multi-modal information such as POI attributes and friendship network, to recommend the next set of POIs suitable for a user. A plethora of earlier works focused on traditional machine learning techniques by using hand-crafted features from the dataset. With the recent surge of deep learning research, we have witnessed a large variety of POI recommendation works utilizing different deep learning paradigms. These techniques largely vary in problem formulations, proposed techniques, used datasets, and features, etc. To the best of our knowledge, this work is the first comprehensive survey of all major deep learning-based POI recommendation works. Our work categorizes and critically analyzes the recent POI recommendation works based on different deep learning paradigms and other relevant features. This review can be considered a cookbook for researchers or practitioners working in the area of POI recommendation.
翻译:以位置为基础的社会网络(LBSNS)使用户能够与朋友和熟人进行社交交流,分享他们的检查、意见、照片和评论。从LBSNS产生的大量数据开辟了新的研究渠道,产生了一个新的建议系统子领域,称为Point-Interest(POI)建议。POI建议技术主要利用用户的历史检查和其他多模式信息,如POI属性和友谊网络,建议适合用户的下一套POI。大量早期工作侧重于传统机器学习技术,利用数据集手工制作的特征。随着最近深层学习研究的激增,我们目睹了大量的POI建议工作,利用了不同的深层学习范式。这些技术在问题表述、拟议技术、使用数据集和特征等方面大不相同。根据我们的知识,这项工作是对基于深层学习的POI建议的所有主要工作进行首次全面调查。我们的工作可以对基于不同深层学习模式的POI建议进行分类和批判性分析,对基于不同研究领域研究人员的近期POI建议工作进行这种审查。