Deep learning provides a powerful new approach to many computer vision tasks. Height prediction from aerial images is one of those tasks that benefited greatly from the deployment of deep learning which replaced old multi-view geometry techniques. This letter proposes a two-stage approach, where first a multi-task neural network is used to predict the height map resulting from a single RGB aerial input image. We also include a second refinement step, where a denoising autoencoder is used to produce higher quality height maps. Experiments on two publicly available datasets show that our method is capable of producing state-of-the-art results. Code is available at https://github.com/melhousni/DSMNet.
翻译:深度学习为许多计算机的视觉任务提供了一个强有力的新方法。 空中图像的高度预测是从部署深度学习中受益匪浅的任务之一,这种深层次学习取代了旧的多视图几何学技术。 这封信建议采取两阶段方法,首先使用多任务神经网络来预测单一RGB空中输入图像产生的高度图。 我们还包括第二个改进步骤,即使用解密的自动编码器来制作质量更高的高度图。 在两个公开的数据集上进行的实验显示,我们的方法能够产生最新的结果。 代码可在https://github.com/melhousni/DSMNet上查阅。