Historically, a lack of cross-disciplinary communication has led to the development of statistical methods for detecting exoplanets by astronomers, independent of the contemporary statistical literature. The aim of our paper is to investigate the properties of such methods. Many of these methods (both transit- and radial velocity-based) have not been discussed by statisticians despite their use in thousands of astronomical papers. Transit methods aim to detect a planet by determining whether observations of a star contain a periodic component. These methods tend to be overly rudimentary for starlight data and lack robustness to model misspecification. Conversely, radial velocity methods aim to detect planets by estimating the Doppler shift induced by an orbiting companion on the spectrum of a star. Many such methods are unable to detect Doppler shifts on the order of magnitude consistent with Earth-sized planets around Sun-like stars. Modern radial velocity approaches attempt to address this deficiency by adapting tools from contemporary statistical research in functional data analysis, but more work is needed to develop the statistical theory supporting the use of these models, to expand these models for multiplanet systems, and to develop methods for detecting ever smaller Doppler shifts in the presence of stellar activity.
翻译:从历史上看,由于缺少跨学科的交流,在现代统计文献之外,天文学家探测外行星的统计方法的开发与当代统计文献无关。我们的论文的目的是调查这些方法的特性。许多这些方法(包括中转速度和辐射速度)尽管在数千份天文论文中使用了这些方法,但统计人员尚未讨论其中的许多方法(包括中转速度和辐射速度)。过境方法的目的是通过确定恒星的观测是否包含定期组成部分来探测一个行星。这些方法往往对星光数据来说过于简单,而且缺乏建模错误的强度。相反,辐射速度方法的目的是通过估算恒星频轨道伴星引发的多普勒变化来探测行星。许多这类方法无法探测多普勒在与太阳般的恒星周围的地球大小行星数量上的变化。现代的辐射速度方法试图通过在功能数据分析中调整当代统计研究的工具来弥补这一缺陷。但需要开展更多的工作,以发展支持使用这些模型的统计理论,扩大这些模型用于多板网系统的模型,并开发探测活动规模越来越小的多普勒活动变化的方法。