We define a class of discrete operators acting on infinite, finite or periodic sequences mimicking the standard properties of pseudo-differential operators. In particular we can define the notion of order and regularity, and we recover the fundamental property that the commutator of two discrete operators gains one order of regularity. We show that standard differential operators acting on periodic functions, finite difference operators and fully discrete pseudo-spectral methods fall into this class of discrete pseudo-differential operators. As examples of practical applications, we revisit standard error estimates for the convergence of splitting methods, obtaining in some Hamiltonian cases no loss of derivative in the error estimates, in particular for discretizations of general waves and/or water-waves equations. Moreover, we give an example of preconditioner constructions inspired by normal form analysis to deal with the similar question for more general cases.
翻译:我们定义了一组以无限、有限或定期序列行事的离散操作员,模仿假相异操作员的标准特性。我们特别可以界定秩序和规律的概念,并收回两个离散操作员的通勤者获得一顺序正常性的基本财产。我们表明,按定期功能、有限差异操作员和完全离散的伪相光谱方法行事的标准不同操作员属于这一类离散伪相异操作员。作为实际应用的例子,我们重新审视了分离方法趋同的标准误差估计,在某些汉密尔顿案中,在误差估计中不会损失衍生物,特别是一般波和/或水波方程式的离散性。此外,我们举了一个受正常形式分析启发的前提条件构建的例子,以便在更一般性的情况下处理类似的问题。