This work investigates the nonparametric estimation of the vector field of a noisy Ordinary Differential Equation (ODE) in high-dimensional ambient spaces, under the assumption that the initial conditions are sampled from a lower-dimensional structure. Specifically, let \( f:\mathbb{R}^{D}\to\mathbb{R}^{D} \) denote the vector field of the autonomous ODE \( y' = f(y) \). We observe noisy trajectories \( \tilde{y}_{X_i}(t_j) = y_{X_i}(t_j) + \varepsilon_{i,j} \), where \( y_{X_i}(t_j) \) is the solution at time \( t_j \) with initial condition \( y(0)=X_i \), the \( X_i \) are drawn from a \((a,b)\)-standard distribution \( \mu \), and \( \varepsilon_{i,j} \) denotes noise. From a minimax perspective, we study the reconstruction of \( f \) within the envelope of trajectories generated by the support of \( \mu \). We proposed an estimator combining flow reconstruction with derivative estimation techniques from nonparametric regression. Under mild regularity assumptions on \( f \), we establish convergence rates that depend on the temporal resolution, the number of initial conditions, and the parameter \( b \), which controls the mass concentration of \( \mu \). These rates are then shown to be minimax optimal (up to logarithmic factors) and illustrate how the proposed approach mitigates the curse of dimensionality. Additionally, we illustrate the computational and statistical efficiency of our estimator through numerical experiments.


翻译:本文研究了在高维环境空间中,假设初始条件采样于低维结构时,含噪声常微分方程(ODE)向量场的非参数估计问题。具体而言,令 \( f:\mathbb{R}^{D}\to\mathbb{R}^{D} \) 表示自治常微分方程 \( y' = f(y) \) 的向量场。我们观测到含噪声的轨迹 \( \tilde{y}_{X_i}(t_j) = y_{X_i}(t_j) + \varepsilon_{i,j} \),其中 \( y_{X_i}(t_j) \) 是初始条件为 \( y(0)=X_i \) 时在时间 \( t_j \) 的解,\( X_i \) 采样自 \((a,b)\)-标准分布 \( \mu \),而 \( \varepsilon_{i,j} \) 表示噪声。从极小极大视角出发,我们研究了在由 \( \mu \) 支撑生成的轨迹包络内重构 \( f \) 的问题。我们提出了一种结合流重构与非参数回归中导数估计技术的估计器。在 \( f \) 满足温和正则性假设的条件下,我们建立了收敛速率,该速率依赖于时间分辨率、初始条件数量以及控制 \( \mu \) 质量集中程度的参数 \( b \)。这些速率随后被证明是极小极大最优的(忽略对数因子),并说明了所提方法如何缓解维度灾难。此外,我们通过数值实验展示了估计器的计算与统计效率。

0
下载
关闭预览

相关内容

【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 2025年6月15日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月30日
VIP会员
相关VIP内容
【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 2025年6月15日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员