It is well understood that, when numerically simulating SDEs with general noise, achieving a strong convergence rate better than $O(\sqrt{h})$ (where h is the step size) requires the use of certain iterated integrals of Brownian motion, commonly referred to as its "Lévy areas". However, these stochastic integrals are difficult to simulate due to their non-Gaussian nature and for a $d$-dimensional Brownian motion with $d > 2$, no fast almost-exact sampling algorithm is known. In this paper, we propose LévyGAN, a deep-learning-based model for generating approximate samples of Lévy area conditional on a Brownian increment. Due to our "Bridge-flipping" operation, the output samples match all joint and conditional odd moments exactly. Our generator employs a tailored GNN-inspired architecture, which enforces the correct dependency structure between the output distribution and the conditioning variable. Furthermore, we incorporate a mathematically principled characteristic-function based discriminator. Lastly, we introduce a novel training mechanism termed "Chen-training", which circumvents the need for expensive-to-generate training data-sets. This new training procedure is underpinned by our two main theoretical results. For 4-dimensional Brownian motion, we show that LévyGAN exhibits state-of-the-art performance across several metrics which measure both the joint and marginal distributions. We conclude with a numerical experiment on the log-Heston model, a popular SDE in mathematical finance, demonstrating that high-quality synthetic Lévy area can lead to high order weak convergence and variance reduction when using multilevel Monte Carlo (MLMC).


翻译:众所周知,在数值模拟具有一般噪声的随机微分方程(SDE)时,若想获得优于 $O(\sqrt{h})$(其中 $h$ 为步长)的强收敛速率,必须使用布朗运动的某些迭代积分,这些积分通常被称为其“Lévy 区域”。然而,这些随机积分由于其非高斯特性而难以模拟,并且对于 $d>2$ 的 $d$ 维布朗运动,目前尚无快速且几乎精确的采样算法。本文提出 LévyGAN,一种基于深度学习的模型,用于生成给定布朗运动增量条件下的 Lévy 区域近似样本。得益于我们的“桥翻转”操作,生成的样本能精确匹配所有联合及条件奇阶矩。我们的生成器采用一种定制的、受图神经网络启发的架构,该架构强制了输出分布与条件变量之间正确的依赖结构。此外,我们引入了一个基于数学原理的特征函数判别器。最后,我们提出了一种名为“Chen 训练”的新型训练机制,该机制避免了对生成成本高昂的训练数据集的需求。这一新训练方法基于我们的两个主要理论结果。对于四维布朗运动,我们展示了 LévyGAN 在多个衡量联合分布与边缘分布的指标上均达到了最先进的性能。我们通过对数 Heston 模型(数理金融中一种常用的随机微分方程)的数值实验作为总结,证明了在使用多级蒙特卡洛方法时,高质量的合成 Lévy 区域能够实现高阶弱收敛和方差缩减。

0
下载
关闭预览

相关内容

【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
傅里叶变换和拉普拉斯变换的物理解释及区别
算法与数学之美
11+阅读 · 2018年2月5日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
Arxiv
0+阅读 · 2025年12月31日
Arxiv
0+阅读 · 2025年12月30日
VIP会员
相关VIP内容
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
傅里叶变换和拉普拉斯变换的物理解释及区别
算法与数学之美
11+阅读 · 2018年2月5日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员