We study the \emph{Bipartite Degree Realization} (BDR) problem: given a graphic degree sequence $D$, decide whether it admits a realization as a bipartite graph. While bipartite realizability for a fixed vertex partition can be decided in polynomial time via the Gale--Ryser theorem, the computational complexity of BDR without a prescribed partition remains unresolved. We address this question through a parameterized analysis. For constants $0 \le c_1 \le c_2 \le 1$, we define $\mathrm{BDR}_{c_1,c_2}$ as the restriction of BDR to degree sequences of length $n$ whose degrees lie in the interval $[c_1 n, c_2 n]$. Our main result shows that $\mathrm{BDR}_{c_1,c_2}$ is solvable in polynomial time whenever $0 \le c_1 \le c_2 \le \frac{\sqrt{c_1(c_1+4)}-c_1}{2}$, as well as for all $c_1 > \tfrac12$. The proof relies on a reduction to extremal \emph{least balanced degree sequences} and a detailed verification of the critical Gale--Ryser inequalities, combined with a bounded subset-sum formulation. We further show that, assuming the NP-completeness of unrestricted BDR, the problem $\mathrm{BDR}_{c_1,c_2}$ remains NP-complete for all $0 < c_2 < \frac{1}{2}$ and $c_1 < 1 - c_2 - \sqrt{1-2c_2}$. % This establishes a sharp conditional boundary between tractable and intractable parameter regimes. Our results clarify the algorithmic landscape of bipartite degree realization and contribute to the broader study of potentially bipartite graphic degree sequences.
翻译:我们研究\textbf{二分图度序列可实现性}问题:给定一个图度序列$D$,判断其是否可被实现为一个二分图。虽然对于固定顶点划分的二分图可实现性可通过Gale--Ryser定理在多项式时间内判定,但未指定划分情形下该问题的计算复杂度仍未解决。我们通过参数化分析探讨该问题。对于常数$0 \le c_1 \le c_2 \le 1$,定义$\mathrm{BDR}_{c_1,c_2}$为BDR问题在度序列长度$n$且所有度值位于区间$[c_1 n, c_2 n]$内的限制情形。我们的主要结果表明:当$0 \le c_1 \le c_2 \le \frac{\sqrt{c_1(c_1+4)}-c_1}{2}$以及所有$c_1 > \tfrac12$时,$\mathrm{BDR}_{c_1,c_2}$可在多项式时间内求解。证明依赖于对极值\textbf{最不平衡度序列}的归约、关键Gale--Ryser不等式的详细验证,并结合有界子集和问题的形式化表述。我们进一步证明:在假设无限制BDR问题为NP完全的前提下,对于所有$0 < c_2 < \frac{1}{2}$且$c_1 < 1 - c_2 - \sqrt{1-2c_2}$,问题$\mathrm{BDR}_{c_1,c_2}$仍保持NP完全性。% 这建立了可处理与难处理参数区域之间的严格条件边界。我们的研究结果阐明了二分图度序列可实现性的算法图景,并为潜在二分图度序列的广泛研究作出贡献。