In this paper, assuming the low-degree conjecture, we provide evidence of computational hardness for two problems: (1) the (partial) matching recovery problem in the sparse correlated Erdős-Rényi graphs $\mathcal G(n,q;ρ)$ when the edge-density $q=n^{-1+o(1)}$ and the correlation $ρ<\sqrtα$ lies below the Otter's threshold, this resolves a remaining problem in \cite{DDL23+}; (2) the detection problem between a pair of correlated sparse stochastic block models $\mathcal S(n,\tfracλ{n};k,ε;s)$ and a pair of independent stochastic block models $\mathcal S(n,\tfrac{λs}{n};k,ε)$ when $ε^2 λs<1$ lies below the Kesten-Stigum (KS) threshold and $s<\sqrtα$ lies below the Otter's threshold, this resolves a remaining problem in \cite{CDGL24+}. One of the main ingredient in our proof is to derive certain forms of \emph{algorithmic contiguity} between two probability measures based on bounds on their low-degree advantage. To be more precise, consider the high-dimensional hypothesis testing problem between two probability measures $\mathbb{P}$ and $\mathbb{Q}$ based on the sample $\mathsf Y$. We show that if the low-degree advantage $\mathsf{Adv}_{\leq D} \big( \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\mathbb{Q}} \big)=O(1)$, then (assuming the low-degree conjecture) there is no efficient algorithm $\mathcal A$ such that $\mathbb{Q}(\mathcal A(\mathsf Y)=0)=1-o(1)$ and $\mathbb{P}(\mathcal A(\mathsf Y)=1)=Ω(1)$. This framework provides a useful tool for performing reductions between different inference tasks, without requiring a strengthened version of the low-degree conjecture as in \cite{MW23+, DHSS25+}.


翻译:本文在低度猜想成立的条件下,为以下两个问题的计算困难性提供了证据:(1) 当边密度 $q=n^{-1+o(1)}$ 且相关性 $ρ<\sqrtα$ 低于 Otter 阈值时,稀疏相关 Erdős-Rényi 图 $\mathcal G(n,q;ρ)$ 中的(部分)匹配恢复问题,这解决了 \cite{DDL23+} 中遗留的一个问题;(2) 当 $ε^2 λs<1$ 低于 Kesten-Stigum (KS) 阈值且 $s<\sqrtα$ 低于 Otter 阈值时,一对相关稀疏随机块模型 $\mathcal S(n,\tfracλ{n};k,ε;s)$ 与一对独立随机块模型 $\mathcal S(n,\tfrac{λs}{n};k,ε)$ 之间的检测问题,这解决了 \cite{CDGL24+} 中遗留的一个问题。我们证明的一个主要组成部分是基于两个概率测度的低度优势界,推导它们之间某种形式的 \emph{算法邻接性}。更精确地说,考虑基于样本 $\mathsf Y$ 的两个概率测度 $\mathbb{P}$ 和 $\mathbb{Q}$ 之间的高维假设检验问题。我们证明,如果低度优势 $\mathsf{Adv}_{\leq D} \big( \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\mathbb{Q}} \big)=O(1)$,那么(在低度猜想成立的假设下)不存在高效算法 $\mathcal A$ 使得 $\mathbb{Q}(\mathcal A(\mathsf Y)=0)=1-o(1)$ 且 $\mathbb{P}(\mathcal A(\mathsf Y)=1)=Ω(1)$。该框架为在不同推断任务之间进行归约提供了一个有用的工具,且无需如 \cite{MW23+, DHSS25+} 中那样要求强化版本的低度猜想。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员