Large language models (LLMs) have significantly advanced the field of natural language processing, with GPT models at the forefront. While their remarkable performance spans a range of tasks, adapting LLMs for real-world business scenarios still poses challenges warranting further investigation. This paper presents an empirical analysis aimed at bridging the gap in adapting LLMs to practical use cases. To do that, we select the question answering (QA) task of insurance as a case study due to its challenge of reasoning. Based on the task we design a new model relied on LLMs which are empowered by domain-specific knowledge extracted from insurance policy rulebooks. The domain-specific knowledge helps LLMs to understand new concepts of insurance for domain adaptation. Preliminary results on real QA pairs show that knowledge enhancement from policy rulebooks significantly improves the reasoning ability of GPT-3.5 of 50.4% in terms of accuracy. The analysis also indicates that existing public knowledge bases, e.g., DBPedia is beneficial for knowledge enhancement. Our findings reveal that the inherent complexity of business scenarios often necessitates the incorporation of domain-specific knowledge and external resources for effective problem-solving.
翻译:暂无翻译