We study a game between $N$ job applicants who incur a cost $c$ (relative to the job value) to reveal their type during interviews and an administrator who seeks to maximize the probability of hiring the best. We define a full learning equilibrium and prove its existence, uniqueness, and optimality. In equilibrium, the administrator accepts the current best applicant $n$ with probability $c$ if $n<n^*$ and with probability 1 if $n\ge n^*$ for a threshold $n^*$ independent of $c$. In contrast to the case without cost, where the success probability converges to $1/\mathrm{e}\approx 0.37$ as $N$ tends to infinity, with cost the success probability decays like $N^{-c}$.
翻译:我们研究的是在面试期间产生成本(与工作价值相对应)的以美元计酬工作申请人与试图最大限度地提高最佳雇用可能性的管理员之间的一种游戏。我们定义了完全的学习平衡,并证明了其存在、独特性和最佳性。在平衡中,管理员接受目前最佳申请人的以美元计酬,如果是美元,则以美元计酬,如果是美元计酬,则以美元计酬,则以美元计酬,以美元计酬,以不以美元计酬,则以美元计酬,则以美元计酬,以美元计酬。相比之下,在无成本的情况下,成功概率接近1美元,以美元计酬,以0.37美元计酬,以美元计酬,以美元计酬为代价,成功概率以美元计等。