Remote screening of respiratory diseases has been widely studied as a non-invasive and early instrument for diagnosis purposes, especially in the pandemic. The respiratory sound classification task has been realized with numerous deep neural network (DNN) models due to their superior performance. However, in the high-stake medical domain where decisions can have significant consequences, it is desirable to develop interpretable models; thus, providing understandable reasons for physicians and patients. To address the issue, we propose a prototype learning framework, that jointly generates exemplar samples for explanation and integrates these samples into a layer of DNNs. The experimental results indicate that our method outperforms the state-of-the-art approaches on the largest public respiratory sound database.
翻译:对呼吸道疾病进行远程筛查,已作为非侵入和早期诊断工具进行广泛研究,特别是在这一大流行病中,呼吸道健康分类任务已经通过许多深神经网络模型完成,因为这些模型的性能优异,然而,在决策可能产生严重后果的高临界医疗领域,最好开发出可解释的模式,从而为医生和病人提供可以理解的理由。为解决这一问题,我们提议了一个原型学习框架,联合生成示范样本,以供解释,并将这些样本纳入一系列DNN。实验结果显示,我们的方法在最大的公共呼吸道健全数据库中超过了最先进的方法。