In intelligent transport systems, it is common and inevitable with missing data. While complete and valid traffic speed data is of great importance to intelligent transportation systems. A latent factorization-of-tensors (LFT) model is one of the most attractive approaches to solve missing traffic data recovery due to its well-scalability. A LFT model achieves optimization usually via a stochastic gradient descent (SGD) solver, however, the SGD-based LFT suffers from slow convergence. To deal with this issue, this work integrates the unique advantages of the proportional-integral-derivative (PID) controller into a Tucker decomposition based LFT model. It adopts two-fold ideas: a) adopting tucker decomposition to build a LFT model for achieving a better recovery accuracy. b) taking the adjusted instance error based on the PID control theory into the SGD solver to effectively improve convergence rate. Our experimental studies on two major city traffic road speed datasets show that the proposed model achieves significant efficiency gain and highly competitive prediction accuracy.
翻译:在智能交通系统中,缺失数据是很常见且不可避免的。虽然完整和有效的交通速度数据对智能交通系统非常重要,但数据缺失也是一大问题。潜变量张量分解模型是解决缺失交通数据恢复的最有吸引力的方法之一,由于其良好的可扩展性而得到广泛应用。潜变量张量分解模型通常通过随机梯度下降(SGD)求解器来实现优化,然而,基于SGD的潜变量张量分解模型收敛速度很慢。为了解决这个问题,本作品将比例-积分-微分(PID)控制器的独特优势与基于Tucker分解的潜变量分解模型相结合。它采用了两个想法:a)采用Tucker分解构建潜变量分解模型以实现更好的恢复精度。b)根据PID控制理论调整实例误差,并将其纳入SGD求解器中,以有效提高收敛率。我们在两个主要城市的交通道路速度数据集上进行的实验研究表明,所提出的模型实现了显着的效率提高和极具竞争力的预测精度。