The lack of non-parametric statistical tests for confounding bias significantly hampers the development of robust, valid and generalizable predictive models in many fields of research. Here I propose the partial and full confounder tests, which, for a given confounder variable, probe the null hypotheses of unconfounded and fully confounded models, respectively. The tests provide a strict control for Type I errors and high statistical power, even for non-normally and non-linearly dependent predictions, often seen in machine learning. Applying the proposed tests on models trained on functional brain connectivity data from the Human Connectome Project and the Autism Brain Imaging Data Exchange dataset reveals confounders that were previously unreported or found to be hard to correct for with state-of-the-art confound mitigation approaches. The tests, implemented in the package mlconfound (https://mlconfound.readthedocs.io), can aid the assessment and improvement of the generalizability and neurobiological validity of predictive models and, thereby, foster the development of clinically useful machine learning biomarkers.


翻译:缺乏非参数统计测试以弥补偏见,这严重阻碍了在许多研究领域开发稳健、有效和可通用的预测模型。在这里,我提议进行部分和完全的混淆模型测试,分别针对某一混凝土变量,分别探究无根据和完全混乱模型的空虚假设。这些测试严格控制了I型错误和高统计能力,即使是在机器学习中经常看到的非正常和非线性依赖预测。在人类连接项目和自闭症脑成像数据交换数据集中就功能性脑连通数据培训模型进行的拟议测试中应用了拟议测试,显示了以前没有报告过的或发现难以纠正的混乱因素。在Mlconfound软件包(https://mlconfound.readthedocs.io)中实施的测试可以帮助评估和改进预测模型的一般性和神经生物学有效性,从而推动开发临床有用的机器生物识别器。

0
下载
关闭预览

相关内容

《机器学习思维导图》,一图掌握机器学习知识要点
专知会员服务
68+阅读 · 2021年1月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
生物探索
3+阅读 · 2018年2月10日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
3+阅读 · 2018年12月18日
Arxiv
3+阅读 · 2018年4月5日
Arxiv
3+阅读 · 2017年12月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
生物探索
3+阅读 · 2018年2月10日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Top
微信扫码咨询专知VIP会员