Behavior prediction plays an important role in integrated autonomous driving software solutions. In behavior prediction research, interactive behavior prediction is a less-explored area, compared to single-agent behavior prediction. Predicting the motion of interactive agents requires initiating novel mechanisms to capture the joint behaviors of the interactive pairs. In this work, we formulate the end-to-end joint prediction problem as a sequential learning process of marginal learning and joint learning of vehicle behaviors. We propose ProspectNet, a joint learning block that adopts the weighted attention score to model the mutual influence between interactive agent pairs. The joint learning block first weighs the multi-modal predicted candidate trajectories, then updates the ego-agent's embedding via cross attention. Furthermore, we broadcast the individual future predictions for each interactive agent into a pair-wise scoring module to select the top $K$ prediction pairs. We show that ProspectNet outperforms the Cartesian product of two marginal predictions, and achieves comparable performance on the Waymo Interactive Motion Prediction benchmarks.
翻译:行为预测在集成自主驱动软件解决方案中起着重要作用。 在行为预测研究中,互动行为预测是一个探索较少的领域,与单剂行为预测相比,是一个探索较少的领域。 预测互动剂的运动需要启动新机制来捕捉互动对子的共同行为。 在这项工作中,我们将端到端联合预测问题作为边际学习和车辆行为联合学习的相继学习过程来制定。 我们提议ProspectNet(ProspectNet)是一个联合学习块,它将加权关注分用于模拟互动剂对子之间的相互影响。 联合学习块首先衡量多式预测候选对象轨迹,然后更新自我代理通过交叉关注嵌入的嵌入过程。 此外,我们将每个互动剂的个体未来预测放入一个双向评分模块,以选择顶级的美元预测对子。 我们显示ProspectNet(ProspectNet)超越了两个边际预测的卡提斯产品,并在Waymo互动模拟预测基准上取得可比的业绩。