In a large variety of systems (biological, physical, social etc.), synchronization occurs when different oscillating objects tune their rhythm when they interact with each other. The different underlying network defining the connectivity properties among these objects drives the global dynamics in a complex fashion and affects the global degree of synchrony of the system. Here we study the impact of such types of different network architectures, such as Fully-Connected, Random, Regular ring lattice graph, Small-World and Scale-Free in the global dynamical activity of a system of coupled Kuramoto phase oscillators. We fix the external stimulation parameters and we measure the global degree of synchrony when different fractions of nodes receive stimulus. These nodes are chosen either randomly or based on their respective strong/weak connectivity properties (centrality, shortest path length and clustering coefficient). Our main finding is, that in Scale-Free and Random networks a sophisticated choice of nodes based on their eigenvector centrality and average shortest path length exhibits a systematic trend in achieving higher degree of synchrony. However, this trend does not occur when using the clustering coefficient as a criterion. For the other types of graphs considered, the choice of the stimulated nodes (randomly vs selectively using the aforementioned criteria) does not seem to have a noticeable effect.
翻译:在各种系统(生物、物理、社会等)中,不同振动物体在相互作用时调和节奏时,同步就会发生。界定这些物体之间连接特性的不同基本网络以复杂的方式驱动着全球动态,影响着系统的全球同步程度。这里我们研究的是这类不同网络结构类型的影响,如完全连接、随机、固定环形、固定环形阵列图、小世界和在由仓本阶段振动器组成的系统的全球动态活动中的无节点。我们确定外部刺激参数,当不同的节点得到刺激时,我们测量全球同步程度。这些节点是随机选择的,或者根据它们各自的强/弱连接特性(集中度、最短路径长度和集聚系数)来选择的。我们的主要发现是,在无空间和随机网络中,根据它们的叶源中心中心和平均最短长度的全球动态活动,对节点的选择显示了实现更高程度同步的系统趋势。然而,当使用组合系数作为刺激因素时,这种趋势不会发生(没有采用可预见的图表标准,没有考虑其他类型的图表,没有采用可预见的标准)。</s>