In a class of piecewise-constant image segmentation models, we propose to incorporate a weighted difference of anisotropic and isotropic total variation (AITV) to regularize the partition boundaries in an image. In particular, we replace the total variation regularization in the Chan-Vese segmentation model and a fuzzy region competition model by the proposed AITV. To deal with the nonconvex nature of AITV, we apply the difference-of-convex algorithm (DCA), in which the subproblems can be minimized by the primal-dual hybrid gradient method with linesearch. The convergence of the DCA scheme is analyzed. In addition, a generalization to color image segmentation is discussed. In the numerical experiments, we compare the proposed models with the classic convex approaches and the two-stage segmentation methods (smoothing and then thresholding) on various images, showing that our models are effective in image segmentation and robust with respect to impulsive noises.
翻译:在一个片断图像分割模型的类别中,我们建议纳入一个亚异谱和异热带总变异的加权差异(AITV)来规范图像中的分区界限。特别是,我们用拟议的 AITV 取代了Chan-Vese分割模型和模糊区域竞争模型的完全变异规范化。为了处理AITV的非混凝土性质,我们应用了调和算法(DCA),在这个算法中,子问题可以通过原始的双倍混合梯度方法与线图解最小化。分析了DCA 方法的趋同。此外,还讨论了对颜色图像分割的概括化。在数字实验中,我们将拟议的模型与典型的convex方法以及各种图像的两阶段分化方法(移动和开始)进行比较,表明我们的模型在图像分解方面是有效的,对不动的噪音是稳健健的。