Deep neural networks for video classification, just like image classification networks, may be subjected to adversarial manipulation. The main difference between image classifiers and video classifiers is that the latter usually use temporal information contained within the video. In this work we present a manipulation scheme for fooling video classifiers by introducing a flickering temporal perturbation that in some cases may be unnoticeable by human observers and is implementable in the real world. After demonstrating the manipulation of action classification of single videos, we generalize the procedure to make universal adversarial perturbation, achieving high fooling ratio. In addition, we generalize the universal perturbation and produce a temporal-invariant perturbation, which can be applied to the video without synchronizing the perturbation to the input. The attack was implemented on several target models and the transferability of the attack was demonstrated. These properties allow us to bridge the gap between simulated environment and real-world application, as will be demonstrated in this paper for the first time for an over-the-air flickering attack.


翻译:视频分类的深神经网络,就像图像分类网络一样,可能会受到对抗性操纵。图像分类者和视频分类者的主要区别在于后者通常使用视频中包含的时间信息。在这项工作中,我们提出了一个欺骗视频分类者的操纵方案,引入了闪烁的时间扰动,在某些情况下,人类观察者可能无法注意到,并且可以在现实世界中实施。在演示了对单个视频行动分类的操纵之后,我们推广了程序,使通用的对立扰动,实现了高的愚弄率。此外,我们普及了通用的图像分类和视频分类,产生了一个时间性易变的扰动,可以适用于视频,而不会同步干扰输入。袭击是在几个目标模型上实施的,袭击的可转移性也得到了演示。这些属性使我们能够弥合模拟环境与真实世界应用之间的差距,本文将首次展示为过度的电动攻击。

1
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
26+阅读 · 2021年4月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2020年12月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Adversarial Metric Attack for Person Re-identification
VIP会员
相关资讯
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员