This paper presents the participation of NetEase Game AI Lab team for the ClariQ challenge at Search-oriented Conversational AI (SCAI) EMNLP workshop in 2020. The challenge asks for a complete conversational information retrieval system that can understanding and generating clarification questions. We propose a clarifying question selection system which consists of response understanding, candidate question recalling and clarifying question ranking. We fine-tune a RoBERTa model to understand user's responses and use an enhanced BM25 model to recall the candidate questions. In clarifying question ranking stage, we reconstruct the training dataset and propose two models based on ELECTRA. Finally we ensemble the models by summing up their output probabilities and choose the question with the highest probability as the clarification question. Experiments show that our ensemble ranking model outperforms in the document relevance task and achieves the best recall@[20,30] metrics in question relevance task. And in multi-turn conversation evaluation in stage2, our system achieve the top score of all document relevance metrics.
翻译:本文展示了 NetEase Game AI Lab 团队在2020 年以搜索为导向的对话AI (SCAI) EMNLP 研讨会上参加 ClariQ 挑战 。 挑战要求建立一个完整的对话信息检索系统, 能够理解和提出澄清问题。 我们建议了一个清晰的问题选择系统, 包括回答理解、 候选人问题回顾和澄清问题排名。 我们微调了一个 RoBERTA 模型, 以理解用户的反应, 并使用一个强化的 BM25 模型来回忆候选人问题。 在澄清问题排序阶段, 我们重建培训数据集, 并基于 ELECTRA 提出两个模型。 最后, 我们通过总结其产出概率, 并以最高概率选择问题作为澄清问题。 实验显示, 我们的组合排序模型在文件相关性任务中超过了最强的功能, 并实现了相关任务中最强的回顾@ 20,30 度。 在第二阶段的多点对话评估中, 我们的系统实现了所有文件相关性指标的顶级。