This survey is meant to provide an introduction to the fundamental theorem of linear algebra and the theories behind them. Our goal is to give a rigorous introduction to the readers with prior exposure to linear algebra. Specifically, we provide some details and proofs of some results from (Strang, 1993). We then describe the fundamental theorem of linear algebra from different views and find the properties and relationships behind the views. The fundamental theorem of linear algebra is essential in many fields, such as electrical engineering, computer science, machine learning, and deep learning. This survey is primarily a summary of purpose, significance of important theories behind it. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in theory behind the fundamental theorem of linear algebra and rigorous analysis in order to seamlessly introduce its properties in four subspaces in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results and given the paucity of scope to present this discussion, e.g., the separated analysis of the (orthogonal) projection matrices. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields. Some excellent examples include (Rose, 1982; Strang, 2009; Trefethen and Bau III, 1997; Strang, 2019, 2021).


翻译:本次调查旨在介绍线性代数及其背后的理论的基本理论。我们的目标是向先前曾接触线性代数的读者严格介绍其基本原理。具体地说,我们提供一些细节和证据,说明从不同观点得出的一些结果(Strang,1993年)。我们然后描述线性代数的基本理论,并找出这些观点背后的属性和关系。线性代数的基本理论在许多领域至关重要,如电气工程、计算机科学、机器学习和深层学习。本调查的主要目的是概述目的、其背后重要理论的意义。本调查的唯一目的是在线性代数基本理论背后对概念和数学工具进行自成一体的介绍(Strang,1993年)。我们然后描述线性代数的基本理论,从不同观点后面的4个子空间无缝地介绍其属性。然而,我们清楚地认识到我们无法涵盖所有有用和有趣的结果,而且鉴于目前讨论的范围很窄,例如,对(ortognal)预测矩阵的分别分析。本调查的唯一目的是在线性代数理论的理论理论背后进行自成自成的介绍。我们参考了19年第20世纪的文献领域,将第3栏中的精细的文献列入与1982年第3栏。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
76+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Quantum Technology for Economists
Arxiv
0+阅读 · 2021年10月8日
Arxiv
0+阅读 · 2021年10月6日
Arxiv
0+阅读 · 2021年10月5日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
10+阅读 · 2020年11月26日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
15+阅读 · 2019年9月30日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
76+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Quantum Technology for Economists
Arxiv
0+阅读 · 2021年10月8日
Arxiv
0+阅读 · 2021年10月6日
Arxiv
0+阅读 · 2021年10月5日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
10+阅读 · 2020年11月26日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
15+阅读 · 2019年9月30日
Top
微信扫码咨询专知VIP会员