Multi-agent active search requires autonomous agents to choose sensing actions that efficiently locate targets. In a realistic setting, agents also must consider the costs that their decisions incur. Previously proposed active search algorithms simplify the problem by ignoring uncertainty in the agent's environment, using myopic decision making, and/or overlooking costs. In this paper, we introduce an online active search algorithm to detect targets in an unknown environment by making adaptive cost-aware decisions regarding the agent's actions. Our algorithm combines principles from Thompson Sampling (for search space exploration and decentralized multi-agent decision making), Monte Carlo Tree Search (for long horizon planning) and pareto-optimal confidence bounds (for multi-objective optimization in an unknown environment) to propose an online lookahead planner that removes all the simplifications. We analyze the algorithm's performance in simulation to show its efficacy in cost aware active search.
翻译:多试剂主动搜索要求自主代理商选择能够有效定位目标的感测动作。 在现实的环境中,代理商还必须考虑其决定产生的成本。 先前提议的积极搜索算法通过忽略代理商环境的不确定性、使用近视决策以及/或忽略成本来简化问题。 在本文中,我们引入了在线主动搜索算法,通过对代理商的行动做出适应性成本意识的决定,在未知环境中检测目标。 我们的算法结合了Thompson Sampling(用于搜索空间探索和分散式多试剂决策)、Monte Carlo树搜索(用于长地平线规划)和对等最佳信任界限(用于在未知环境中实现多目标优化)的原则,以提出消除所有简化的在线外观规划器。 我们分析了模拟算法的性能,以显示其在成本意识主动搜索中的效率。