We propose an unsupervised machine-learning checkpoint-restart (CR) lossy algorithm for particle-in-cell (PIC) algorithms using Gaussian mixtures (GM). The algorithm features a particle compression stage and a particle reconstruction stage, where a continuum particle distribution function is constructed and resampled, respectively. To guarantee fidelity of the CR process, we ensure the exact preservation of charge, momentum, and energy for both compression and reconstruction stages, everywhere on the mesh. We also ensure the preservation of Gauss' law after particle reconstruction. As a result, the GM CR algorithm is shown to provide a clean, conservative restart capability while potentially affording orders of magnitude savings in input/output requirements. We demonstrate the algorithm using a recently developed exactly energy- and charge-conserving PIC algorithm on physical problems of interest, with compression factors $\gtrsim75$ with no appreciable impact on the quality of the restarted dynamics.
翻译:我们建议对使用高森混合物的细胞内粒子(PIC)算法进行不受监督的机器学习检查站重新启动(CR)损失算法。 算法具有粒子压缩阶段和粒子重建阶段的特点,即分别构建和重新采样的连续粒子分配功能。 为了保证CR过程的准确性,我们在网目上确保准确保存压缩阶段和重建阶段的收费、动力和能量。 我们还确保在粒子重建后维护高斯的法律。 因此,GMCR算法显示,它提供了清洁、保守的重新启动能力,同时有可能在投入/产出要求方面带来数量级的节省。 我们用最近开发的精确的能源和收费的石化算法对实际感兴趣的问题进行了论证,压缩系数为$\grsim75美元,对重新启动的动态的质量没有明显影响。