The moment-of-fluid (MOF) method is an extension of the volume-of-fluid method with piecewise linear interface construction (VOF-PLIC). By minimizing the least square error of the centroid of the cutting polyhedron, the MOF method reconstructs the linear interface without using any neighboring information. Traditional MOF involves iteration while finding the optimized linear reconstruction. Here, we propose an alternative approach based on a machine learning algorithm: Decision Tree algorithm. A training data set is generated from a list of random cuts of a unit cube by plane. The Decision Tree algorithm extracts the input-output relationship from the training data, so that the resulting function determines the normal vector of the reconstruction plane directly, without any iteration. The present method is tested on a range of popular interface advection test problems. Numerical results show that our approach is much faster than the iteration-based MOF method while provides compatible accuracy with the conventional MOF method.
翻译:浮流瞬间法( 浮流瞬间法) 是流体体积法的延伸, 以片断线性介面构造( VOF- PLIC) 扩展。 通过最大限度地减少切除聚红外环形的最小误差, 浮流法在不使用任何相邻信息的情况下重建线性介面。 传统的浮流法在寻找优化线性重建时涉及迭代。 在这里, 我们建议了一种基于机器学习算法的替代方法 : 决策树算法 。 一组培训数据来自一个按平面随机切换单位立方体的列表 。 决策树算法从培训数据中提取了输入输出关系, 这样产生的函数就可以直接决定重建平面的正常矢量, 而不作任何迭代。 目前的方法在一系列流行界面对流测试问题中测试 。 数字结果显示, 我们的方法比基于试用模式的方法要快得多, 同时提供与常规的 MOF 方法相容的精度 。