Fake news, false or misleading information presented as news, has a significant impact on many aspects of society, such as in politics or healthcare domains. Due to the deceiving nature of fake news, applying Natural Language Processing (NLP) techniques to the news content alone is insufficient. The multi-level social context information (news publishers and engaged users in social media) and temporal information of user engagement are important information in fake news detection. The proper usage of this information, however, introduces three chronic difficulties: 1) multi-level social context information is hard to be used without information loss, 2) temporal information is hard to be used along with multi-level social context information, 3) news representation with multi-level social context and temporal information is hard to be learned in an end-to-end manner. To overcome all three difficulties, we propose a novel fake news detection framework, Hetero-SCAN. We use Meta-Path to extract meaningful multi-level social context information without loss. Meta-Path, a composite relation connecting two node types, is proposed to capture the semantics in the heterogeneous graph. We then propose Meta-Path instance encoding and aggregation methods to capture the temporal information of user engagement and produce news representation end-to-end. According to our experiment, Hetero-SCAN yields significant performance improvement over state-of-the-art fake news detection methods.
翻译:假新闻、假消息或误导信息作为新闻,对社会许多方面,例如政治或保健领域产生了重大影响。由于假新闻的欺骗性质,将自然语言处理技术应用于新闻内容本身是不够的。多层次的社会背景信息(新闻出版商和社交媒体的参与用户)和用户参与的时间信息是假新闻探测的重要信息。但是,正确使用这种信息带来了三个长期存在的困难:1) 多层次的社会背景信息难以在不失去信息的情况下加以利用;2 时间信息难以与多层次的社会背景信息一起使用;3) 将多层次的社会背景和时间信息加以利用,很难以端到端的方式学习。为了克服所有三个困难,我们提出了一个新的假新闻检测框架,即Heero-ScAN。我们使用Meta-Path来获取有意义的多层次社会背景信息,而不亏损。Meta-Path(一种连接两种节点的复合关系)是为了捕捉到多层次的社会背景图中的语义信息。我们随后建议采用Meta-Pathin regredudestration-toiming restimeal-station-prestial dequistration-station-press