This paper introduces the functional tensor singular value decomposition (FTSVD), a novel dimension reduction framework for tensors with one functional mode and several tabular modes. The problem is motivated by high-order longitudinal data analysis. Our model assumes the observed data to be a random realization of an approximate CP low-rank functional tensor measured on a discrete time grid. Incorporating tensor algebra and the theory of Reproducing Kernel Hilbert Space (RKHS), we propose a novel RKHS-based constrained power iteration with spectral initialization. Our method can successfully estimate both singular vectors and functions of the low-rank structure in the observed data. With mild assumptions, we establish the non-asymptotic contractive error bounds for the proposed algorithm. The superiority of the proposed framework is demonstrated via extensive experiments on both simulated and real data.
翻译:本文介绍了功能性强压单值分解(FTSVD),这是一个用于使用一种功能模式和若干表格式的抗压器的新颖的维度递减框架。问题是由高阶纵向数据分析驱动的。我们的模型假设观察到的数据是随机实现在离散时间网格上测量到的近似CP低级功能强度。我们建议采用基于RKHS的新型限制功率转换法,并采用光谱初始化。我们的方法可以成功地估计所观测的数据中单个矢量和低级结构的功能。我们用轻微的假设,我们为拟议的算法建立了非被动式缩缩缩缩缩错误界限。通过模拟数据和实际数据的广泛实验,可以证明拟议框架的优越性。