This paper introduces the functional tensor singular value decomposition (FTSVD), a novel dimension reduction framework for tensors with one functional mode and several tabular modes. The problem is motivated by high-order longitudinal data analysis. Our model assumes the observed data to be a random realization of an approximate CP low-rank functional tensor measured on a discrete time grid. Incorporating tensor algebra and the theory of Reproducing Kernel Hilbert Space (RKHS), we propose a novel RKHS-based constrained power iteration with spectral initialization. Our method can successfully estimate both singular vectors and functions of the low-rank structure in the observed data. With mild assumptions, we establish the non-asymptotic contractive error bounds for the proposed algorithm. The superiority of the proposed framework is demonstrated via extensive experiments on both simulated and real data.


翻译:本文介绍了功能性强压单值分解(FTSVD),这是一个用于使用一种功能模式和若干表格式的抗压器的新颖的维度递减框架。问题是由高阶纵向数据分析驱动的。我们的模型假设观察到的数据是随机实现在离散时间网格上测量到的近似CP低级功能强度。我们建议采用基于RKHS的新型限制功率转换法,并采用光谱初始化。我们的方法可以成功地估计所观测的数据中单个矢量和低级结构的功能。我们用轻微的假设,我们为拟议的算法建立了非被动式缩缩缩缩缩错误界限。通过模拟数据和实际数据的广泛实验,可以证明拟议框架的优越性。

0
下载
关闭预览

相关内容

奇异值是矩阵里的概念,一般通过奇异值分解定理求得。设A为m*n阶矩阵,q=min(m,n),A*A的q个非负特征值的算术平方根叫作A的奇异值。奇异值分解是线性代数和矩阵论中一种重要的矩阵分解法,适用于信号处理和统计学等领域。
专知会员服务
38+阅读 · 2021年8月20日
【AAAI2021】协同挖掘:用于稀疏注释目标检测的自监督学习
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
124+阅读 · 2020年8月2日
【ICML2020】用于强化学习的对比无监督表示嵌入
专知会员服务
27+阅读 · 2020年7月6日
专知会员服务
161+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
8+阅读 · 2019年1月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
专知会员服务
38+阅读 · 2021年8月20日
【AAAI2021】协同挖掘:用于稀疏注释目标检测的自监督学习
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
124+阅读 · 2020年8月2日
【ICML2020】用于强化学习的对比无监督表示嵌入
专知会员服务
27+阅读 · 2020年7月6日
专知会员服务
161+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
8+阅读 · 2019年1月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员