Diffusion models have proven to be highly effective in generating high-quality images. However, adapting large pre-trained diffusion models to new domains remains an open challenge, which is critical for real-world applications. This paper proposes DiffFit, a parameter-efficient strategy to fine-tune large pre-trained diffusion models that enable fast adaptation to new domains. DiffFit is embarrassingly simple that only fine-tunes the bias term and newly-added scaling factors in specific layers, yet resulting in significant training speed-up and reduced model storage costs. Compared with full fine-tuning, DiffFit achieves 2$\times$ training speed-up and only needs to store approximately 0.12\% of the total model parameters. Intuitive theoretical analysis has been provided to justify the efficacy of scaling factors on fast adaptation. On 8 downstream datasets, DiffFit achieves superior or competitive performances compared to the full fine-tuning while being more efficient. Remarkably, we show that DiffFit can adapt a pre-trained low-resolution generative model to a high-resolution one by adding minimal cost. Among diffusion-based methods, DiffFit sets a new state-of-the-art FID of 3.02 on ImageNet 512$\times$512 benchmark by fine-tuning only 25 epochs from a public pre-trained ImageNet 256$\times$256 checkpoint while being 30$\times$ more training efficient than the closest competitor.


翻译:扩散模型在生成高质量图像方面已被证明非常有效。然而,将大型预训练扩散模型适应到新领域仍然是一个挑战,这对于实际应用非常关键。本文提出了DiffFit,一种高效的参数微调策略,可在快速适应新领域的同时,实现大型预训练扩散模型的精细调整。DiffFit非常简单,只微调特定层中的偏置项和新添加的比例因子,却能显著提高训练速度并降低模型存储成本。与全模型微调相比,DiffFit 实现了2倍的训练加速,并且只需要存储大约0.12%的总模型参数。有直观的理论分析证明了比例因子对快速适应的有效性。在8个下游数据集上,DiffFit的性能要么优于要么与全模型微调相当,同时更加高效。值得注意的是,我们展示了如何通过增加最小的代价,将一个预训练的低分辨率生成模型适应高分辨率。在基于扩散的方法中,DiffFit通过从公共预训练的ImageNet 256×256检查点微调25个时期来实现FID的新高度,达到3.02,同时比最接近的竞争者更高效30倍。

0
下载
关闭预览

相关内容

【CVPR2022】基于知识蒸馏的高效预训练
专知会员服务
31+阅读 · 2022年4月23日
【CVPR 2022】视觉提示调整(VPT),Vision Prompt Tuning
专知会员服务
31+阅读 · 2022年3月12日
专知会员服务
44+阅读 · 2020年10月31日
Ladder Side-Tuning:预训练模型的“过墙梯”
PaperWeekly
0+阅读 · 2022年6月24日
已删除
将门创投
14+阅读 · 2019年5月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月26日
VIP会员
相关资讯
Ladder Side-Tuning:预训练模型的“过墙梯”
PaperWeekly
0+阅读 · 2022年6月24日
已删除
将门创投
14+阅读 · 2019年5月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员