A probabilistic secret sharing scheme is a joint probability distribution of the shares and the secret together with a collection of secret recovery functions. The study of schemes using arbitrary probability spaces and unbounded number of participants allows us to investigate their abstract properties, to connect the topic to other branches of mathematics, and to discover new design paradigms. A scheme is perfect if unqualified subsets have no information on the secret, that is, their total share is independent of the secret. By relaxing this security requirement, three other scheme types are defined. Our first result is that every (infinite) access structure can be realized by a perfect scheme where the recovery functions are non-measurable. The construction is based on a paradoxical pair of independent random variables which determine each other. Restricting the recovery functions to be measurable ones, we give a complete characterization of access structures realizable by each type of the schemes. In addition, either a vector-space or a Hilbert-space based scheme is constructed realizing the access structure. While the former one uses the traditional uniform distributions, the latter one uses Gaussian distributions, leading to a new design paradigm.
翻译:概率秘密分享计划是股票和秘密秘密的共同概率分配,同时收集秘密回收功能。对使用任意概率空间和无限制参与者数的计划进行研究,使我们得以调查其抽象属性,将专题与其他数学分支联系起来,并发现新的设计范式。如果不合格的子集没有关于秘密的信息,也就是说,其总份额是独立于秘密的。通过放松这一安全要求,确定了另外三种计划类型。我们的第一个结果是,每个(无限)准入结构都可以通过一个完美计划实现,而恢复功能是不可衡量的。这一计划的基础是一对自相矛盾的独立的随机变量,这些变量决定了彼此。将回收功能限制为可测量的参数,我们给出了每一类型计划所实现的准入结构的完整特征。此外,一个矢量空间或基于希尔伯特空间的计划正在构建一个实现访问结构的图案。前一个方案使用传统的统一分布,后一个方案使用高斯分布,导致新的设计范式。