Deep Learning (DL) has been utilized pervasively in the Internet of Things (IoT). One typical application of DL in IoT is device identification from wireless signals, namely Non-cryptographic Device Identification (NDI). However, learning components in NDI systems have to evolve to adapt to operational variations, such a paradigm is termed as Incremental Learning (IL). Various IL algorithms have been proposed and many of them require dedicated space to store the increasing amount of historical data, and therefore, they are not suitable for IoT or mobile applications. However, conventional IL schemes can not provide satisfying performance when historical data are not available. In this paper, we address the IL problem in NDI from a new perspective, firstly, we provide a new metric to measure the degree of topological maturity of DNN models from the degree of conflict of class-specific fingerprints. We discover that an important cause for performance degradation in IL enabled NDI is owing to the conflict of devices' fingerprints. Second, we also show that the conventional IL schemes can lead to low topological maturity of DNN models in NDI systems. Thirdly, we propose a new Channel Separation Enabled Incremental Learning (CSIL) scheme without using historical data, in which our strategy can automatically separate devices' fingerprints in different learning stages and avoid potential conflict. Finally, We evaluated the effectiveness of the proposed framework using real data from ADS-B (Automatic Dependent Surveillance-Broadcast), an application of IoT in aviation. The proposed framework has the potential to be applied to accurate identification of IoT devices in a variety of IoT applications and services. Data and code available at IEEE Dataport (DOI: 10.21227/1bxc-ke87) and \url{https://github.com/pcwhy/CSIL}}
翻译:深度学习 (DL) 已在Tings Internet (IOURT) 中被广泛使用。 在 IOT 中, DL 的典型应用是无线信号,即非加密设备识别(NDI) 中的设备识别。然而,NDI 系统中的学习构件必须演进,以适应操作变异,这种范式被称为递增学习(IL) 。提出了各种 IL 算法,许多这种算法需要专门的空间来存储越来越多的历史数据,因此,这些数据不适合 IOT 或移动应用程序。然而,常规的 IL 计划无法在没有历史数据应用时提供令人满意的性能。 在本文件中,我们从新角度解决NDI 的 IL 问题。 首先,我们提供了一个新的衡量DNNN模型从表型指纹冲突的程度来测量其地形成熟度的尺度。 我们发现,在IL 允许 NDI 的性能退化的一个重要原因是设备指纹冲突。 其次,我们还表明常规的 IL 规则可以导致 NNNT DI 应用 10 DL 系统 的顶级系统 的表化成熟度应用 。 第三, 我们提议在历史数据数据库中, 在历史数据库中可以自动学习中, 在历史数据系统中进行新的数据库中, 学习中,, 在历史数据分析中, 避免 的系统上进行新的数据, 在历史数据分析系统上,在使用, 在使用 数据 的系统上,在使用不同的 ADRILODRVDRVDODRVDRDA 。