In this paper, we bring the techniques of the Laplacian paradigm to the congested clique, while further restricting ourselves to deterministic algorithms. In particular, we show how to solve a Laplacian system up to precision $\epsilon$ in $n^{o(1)}\log(1/\epsilon)$ rounds. We show how to leverage this result within existing interior point methods for solving flow problems. We obtain an $m^{3/7+o(1)}U^{1/7}$ round algorithm for maximum flow on a weighted directed graph with maximum weight $U$, and we obtain an $\tilde{O}(m^{3/7}(n^{0.158}+n^{o(1)}\text{poly}\log W))$ round algorithm for unit capacity minimum cost flow on a directed graph with maximum cost $W$. Hereto, we give a novel routine for computing Eulerian orientations in $O(\log n \log^* n)$ rounds, which we believe may be of separate interest.


翻译:确定性拥塞团中的拉普拉斯范式 翻译后的摘要: 本文将拉普拉斯范式技术应用于拥塞团,并进一步限制在确定性算法中。我们特别展示了如何在$n^{o(1)}\log(1/\epsilon)$轮内解决拉普拉斯系统以达到精度$\epsilon$。在解决流问题的现有内点方法中,我们展示了如何利用这个结果。在权重有上界$U$的带权指向图上,我们获得了一个$m^{3/7+o(1)}U^{1/7}$轮的最大流算法; 在最大成本不超过$W$的无向图中,我们获得了一个$\tilde{O}(m^{3/7}(n^{0.158}+n^{o(1)}\text{poly}\log W))$轮的最小成本最大流算法。此外,我们还提供了一个在$O(\log n \log^* n)$轮内计算欧拉定向的新例程,我们认为这可能是一个单独的有趣研究方向。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
129+阅读 · 2023年1月29日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
76+阅读 · 2021年12月8日
【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
50+阅读 · 2021年11月15日
专知会员服务
90+阅读 · 2021年6月29日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
YOLOv3:An Incremental Improvement 全文翻译
极市平台
12+阅读 · 2018年3月28日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
129+阅读 · 2023年1月29日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
76+阅读 · 2021年12月8日
【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
50+阅读 · 2021年11月15日
专知会员服务
90+阅读 · 2021年6月29日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
YOLOv3:An Incremental Improvement 全文翻译
极市平台
12+阅读 · 2018年3月28日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员