Having the ability to estimate an object's properties through interaction will enable robots to manipulate novel objects. Object's dynamics, specifically the friction and inertial parameters have only been estimated in a lab environment with precise and often external sensing. Could we infer an object's dynamics in the wild with only the robot's sensors? In this paper, we explore the estimation of dynamics of a grasped object in motion, with tactile force sensing at multiple fingertips. Our estimation approach does not rely on torque sensing to estimate the dynamics. To estimate friction, we develop a control scheme to actively interact with the object until slip is detected. To robustly perform the inertial estimation, we setup a factor graph that fuses all our sensor measurements on physically consistent manifolds and perform inference. We show that tactile fingertips enable in-hand dynamics estimation of low mass objects.
翻译:通过交互来估计物体特性的能力将使机器人能够操纵新物体。 物体的动态, 特别是摩擦和惯性参数, 仅在精确且往往是外部感测的实验室环境中进行了估计。 我们能否用机器人的传感器来推断物体在野外的动态? 在本文中, 我们用多指尖进行触动力感测, 来估计被捕捉物体的动态。 我们的估算方法并不依靠触动感测来估计动态。 为了估计摩擦, 我们开发了一种控制方案, 在检测出渗漏之前与物体积极互动。 为了强有力地进行惯性估测, 我们设置了一个因子图, 将所有感测到的传感器测量结果都结合到物理一致性的多元并进行推断。 我们显示, 触动感应使低质量物体能够进行手动动态估测。