In a \emph{data poisoning attack}, an attacker modifies, deletes, and/or inserts some training examples to corrupt the learnt machine learning model. \emph{Bootstrap Aggregating (bagging)} is a well-known ensemble learning method, which trains multiple base models on random subsamples of a training dataset using a base learning algorithm and uses majority vote to predict labels of testing examples. We prove the intrinsic certified robustness of bagging against data poisoning attacks. Specifically, we show that bagging with an arbitrary base learning algorithm provably predicts the same label for a testing example when the number of modified, deleted, and/or inserted training examples is bounded by a threshold. Moreover, we show that our derived threshold is tight if no assumptions on the base learning algorithm are made. We empirically evaluate our method on MNIST and CIFAR10. For instance, our method can achieve a certified accuracy of $70.8\%$ on MNIST when arbitrarily modifying, deleting, and/or inserting 100 training examples.


翻译:在 \ emph{ 数据中毒攻击} 中,攻击者修改、删除和(或)插入一些训练范例,以腐蚀所学的机器学习模式。 \ emph{Bootstrap 聚合(bushing)} 是一种众所周知的混合学习方法,它用一种基础学习算法来对培训数据集随机子样本进行多基模型培训,并使用多数票来预测测试实例的标签。 我们证明,包装袋在防止数据中毒攻击上具有内在的经证明的可靠性。 具体地说,当修改、删除和(或)插入的培训示例被一个阈值所捆绑在一起时,我们用任意修改、删除和(或)插入的培训示例都预示出相同的标签。 此外,我们显示,如果在基础学习算法上没有作出假设,我们得出的阈值是紧的。 我们用实验性地评估了我们在MNIST 和 CIFAR10 上的方法。 例如,我们的方法在任意修改、 删除和(或) 插入100 训练示例时, 可以在MNIST 上取得经认证的70.8 $$70.

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Meta-Learning to Cluster
Arxiv
18+阅读 · 2019年10月30日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Meta-Learning to Cluster
Arxiv
18+阅读 · 2019年10月30日
Top
微信扫码咨询专知VIP会员