We describe a model for polarization in multi-agent systems based on Esteban and Ray's standard measure of polarization from economics. Agents evolve by updating their beliefs (opinions) based on an underlying influence graph, as in the standard DeGroot model for social learning, but under a confirmation bias; i.e., a discounting of opinions of agents with dissimilar views. We show that even under this bias polarization eventually vanishes (converges to zero) if the influence graph is strongly-connected. If the influence graph is a regular symmetric circulation, we determine the unique belief value to which all agents converge. Our more insightful result establishes that, under some natural assumptions, if polarization does not eventually vanish then either there is a disconnected subgroup of agents, or some agent influences others more than she is influenced. We also prove that polarization does not necessarily vanish in weakly-connected graphs under confirmation bias. Furthermore, we show how our model relates to the classic DeGroot model for social learning. We illustrate our model with several simulations of a running example about polarization over vaccines and of other case studies. The theoretical results and simulations will provide insight into the phenomenon of polarization.
翻译:我们描述一个基于Esteban和Ray标准经济两极分化衡量标准的多试剂系统中两极分化的模式。代理商通过根据基本影响图更新其信仰(意见)而演变,其基础影响图,如社会学习标准DeGroot模式,但有确认偏差;即对不同观点的代理商的意见进行折扣;我们表明,即使根据这种偏差,极分化最终也会消失(连接到零),如果影响图是紧密相连的。如果影响图是一个定期的对称循环,我们就会确定所有代理商都聚集在一起的独特信仰价值。我们更深入地发现,根据一些自然假设,如果两极化最终没有消失,那么就会有一个不相连的代理商分组,或者某些代理商对其他人的影响大于她受到的影响。我们还证明,在存在确认偏差的薄弱关联图中,两极化不一定消失。此外,我们展示我们的模型与典型的DeGroot模式如何与社会学习模式相联系。我们用关于疫苗和其他案例研究的一些模拟来说明我们的模型。理论结果和模拟将为两极分化现象提供洞见。